產(chǎn)地:加拿大 Regent
參考文獻(xiàn) 原始數(shù)據(jù)來(lái)源:Google Scholar Bulens, I., et al., Dynamic changes of the ethylene biosynthesis in ‘Jonagold’ apple. Physiologia Plantarum, 2014. 150(2): p. 161-173. Centeno, R., et al., Three mirror of axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser. Sensors and Actuators B: Chemical, 2014. 203: p. 311-319. Chmielewska-Bak, J., et al., Effect of cobalt chloride on soybean seedlings subjected to cadmium stress. Acta Societatis Botanicorum Poloniae, 2014. 83(3). Hoogstrate, S.W., et al., Tomato ACS4 is necessary for timely start of and progression through the climacteric phase of fruit ripening. Frontiers in Plant Science, 2014. 5: p. 466. Keshavarzi, M., et al., Ethephon and secondary shoot induction in Gentian (Gentiana spp.) hybrids in vitro. Scientia Horticulturae, 2014. 179: p. 170-173. Martin Sch?fer, et al., Cytokinin concentrations and CHASE-DOMAIN CONTAINING HIS KINASE 2 (NaCHK2)- and NaCHK3-mediated perception modulate herbivory-induced defense signaling and defenses in Nicotiana attenuata. The New phytologist, 2015. 207(3): p. 645-658. Razzaq, K., et al., Role of 1-MCP in regulating 'Kensington Pride' mango fruit softening and ripening. Plant Growth Regulation, 2015: p. 1-11. Rupavatharam, S., A.R. East, and J.A. Heyes, Re-evaluation of harvest timing in ‘Unique’ feijoa using 1-MCP and exogenous ethylene treatments. Postharvest Biology and Technology, 2015. 99: p. 152-159. Santhanam, R., et al., Analysis of Plant-Bacteria Interactions in Their Native Habitat: Bacterial Communities Associated with Wild Tobacco Are Independent of Endogenous Jasmonic Acid Levels and Developmental Stages. PLoS ONE, 2014. 9(4): p. e94710. Schellingen, K., et al., Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression. BMC Plant Biology, 2014. 14(1): p. 1-14. Wilson, R.L., A. Bakshi, and B.M. Binder, Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana. Frontiers in Plant Science, 2014. 5: p. Article 433(1-13). Wilson, R.L., et al., The Ethylene Receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 Have Contrasting Roles in Seed Germination of Arabidopsis during Salt Stress. Plant Physiology, 2014. 165(1532-2548 (Electronic)): p. 1353–1366. Xu, A., W. Zhang, and C.-K. Wen, ENHANCING CTR1-10 ETHYLENE RESPONSE2 is a novel allele involved in CONSTITUTIVE TRIPLE-RESPONSE1-mediated ethylene receptor signaling in Arabidopsis. BMC Plant Biology, 2014. 14: p. 48-48. Zahoor Hussain, Z.S., Involvement of ethylene in causation of creasing in sweet orange [Citrus sinensis (L.) Osbeck] fruit. Australian Journal of Crop Science, 2015. 9(1): p. 1-8. A. Rodríguez-García, et al. (2016). "Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.)." Industrial Crops and Products 86: 143-154. D. Wrońska-Wa?ach, et al. (2016). "Quantitative analysis of ring growth in spruce roots and its application towards a more precise dating." Dendrochronologia 38: 61-71. A. Rodríguez-García, et al. (2015). "Influence of climate variables on resin yield and secretory structures in tapped Pinus pinaster Ait. in central Spain." Agricultural and Forest Meteorology 202: 83-93. |